Back to Directory
Sign in to view full directory information.
Sign in
Michael Hay
Adjunct Associate Professor of Computer Science
I'm interested in exploring new technologies for privacy-preserving data analysis. The goal is to build software that provides rigorous privacy protection but at the same time allows researchers to analyze the data and discover aggregate trends.
AB, Dartmouth College; MS, PhD, University of Massachusetts, Amherst
Computer science, data management, data mining, and privacy and technology
Crowd-Blending Privacy
Johannes Gehrke, Michael Hay, Edward Lui, and Rafael Pass
Crypto 2012
iReduct: Differential Privacy with Reduced Relative Errors
Xiaokui Xiao, Gabriel Bender, Michael Hay, Johannes Gehrke
SIGMOD 2011
Privacy-aware Data Management in Information Networks (Tutorial)
Michael Hay, Kun Liu, Gerome Miklau, Jian Pei, and Evimaria Terzi
SIGMOD 2011
Enabling Accurate Analysis of Private Network Data
Michael Hay
PhD Thesis 2010
Resisting Structural Re-identification in Anonymized Social Networks
Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Chao Li
VLDB Journal 2010
Optimizing Linear Counting Queries Under Differential Privacy
Chao Li, Michael Hay, Vibhor Rastogi, Gerome Miklau, Andrew McGregor
PODS 2010
Boosting the Accuracy of Differentially-Private Histograms Through Consistency
Michael Hay, Vibhor Rastogi, Gerome Miklau, Dan Suciu
VLDB 2010
Enabling Accurate Analysis of Private Network Data
Michael Hay, Gerome Miklau, David Jensen
Draft book chapter, Privacy-Aware Knowledge Discovery: Novel Applications and New Techniques, Chapman & Hall/CRC Press. 2010
Accurate Estimation of the Degree Distribution of Private Networks
Michael Hay, Chao Li, Gerome Miklau, David Jensen
ICDM 2009
Relationship Privacy: Output Perturbation for Queries with Joins
Vibhor Rastogi, Michael Hay, Gerome Miklau, Dan Suciu
PODS 2009
Resisting Structural Re-identification in Anonymized Social Networks
Michael Hay, Gerome Miklau, David Jensen, Don Towsley, and Philipp Weis
VLDB 2008
Anonymizing social networks
Michael Hay, Gerome Miklau, David Jensen, Philipp Weis, and Siddharth Srivastava
University of Massachusetts Amherst Technical Report 2007
An integrated, conditional model of information extraction and coreference with application to citation matching
Ben Wellner, Andrew McCallum, Fuchun Peng and Michael Hay
UAI 2004
Learning relational probability trees
Jennifer Neville, David Jensen, Lisa Friedland, and Michael Hay
SIGKDD 2003
Avoiding bias when aggregating relational data with degree disparity
David Jensen, Jennifer Neville, and Michael Hay
ICML 2003
“Enabling Accurate Analysis of Private Network Data.”