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Abstract
I compile a unique dataset on plug-in electric vehicle charging at 13 HEIs in New York and
Massachusetts. Using a staggered differences-in-differences design, I estimate the impact of
adding charging stations on PEV adoption and station utilization. I find that adding the first
station attracts 1-2 unique users each week, who together drain 24.2 kWh from stations each day.
Each subsequent charging station increases PEV adoption by less than one unique user each
week, and meaningfully increases station utilization about five kWh daily. These results indicate
that drivers are likely supplementing charging at home with charging on-campus, rather than
relying on charging on-campus as their main source of re-fueling. I also find diminishing
marginal returns to both PEV adoption and station utilization, which suggests there is a limit to
the extent to which HEIs can encourage charging on-campus.
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I. Introduction

Most automobiles on the road are powered by either gas or diesel (these are known as

conventional vehicles, or CVs); however, sales of plug-in electric vehicles (PEVs), which are a

subset of electric vehicles that run by drawing electricity from an external power source, are on

the rise (Soltani-Sobh 2017). PEVs can be either battery electric vehicles (BEVs), which must be

charged to run, or plug-in hybrid electric vehicles (PHEVs), which can run on either gas or

electricity. Figure 1 illustrates the growing popularity of PEVs among U.S. consumers broken

down by BEVs and PHEVs. While many more BEVs than PHEVs have been sold every year,

total sales of PEVs grew steadily from 2015 to 2018, and has more than doubled since then to

just under 1,000,000 vehicles in 2022 (IEA 2023). Monthly sales data from WardAuto finds that

over 1,400,000 plug-in electric vehicles were sold last year, more than any previous year’s total

(Argonne National Laboratory, 2023). The ongoing upward trend in PEV sales indicates that

consumers are increasingly aware of alternative driving options, and increasingly seriously

considering them. Many U.S. policymakers are concerned about the environmental impacts of

CVs, and have employed various policy instruments to encourage electric vehicle adoption. Most

recently, President Biden expanded existing regulation on tailpipe pollution to boost sales of

electric vehicles (Davenport, 2024). The transition to PEVs is therefore a relevant and pressing

topic for both consumers and policymakers.

https://doi.org/10.1016/j.trpro.2017.03.027
https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer


Figure 1: Although EVs were brought to market decades ago, sales of PEVs have increased rapidly in the United
States over the past decade as consumers look to driving alternatives to CVs. (Data: International Energy Agency
2023)

One of the greatest challenges to widespread PEV adoption is installing adequate public

charging infrastructure (Alanzani 2023). While the rate at which charging stations are being

added is growing alongside the pool of PEVs, there are many PEVs relative to the number of

charging stations and gas stations are far more common than charging stations. Given the

convenience and reliability of operating a CV, many buyers find it difficult to justify the higher

sticker price of a PEV (Rapson & Muehlegger 2023). Fortunately, policymakers in these states

seem attuned to these concerns. The latest update from the Alternative Fuel Data Center (AFDC)

indicates that there are 3,797 and 2,900 public (available and planned) charging stations in New

York and Massachusetts, respectively (2024). According to historical data from the AFDC, these

represent a 14% and a 21% increase in charging infrastructure since the end of 2022. In states

like New York and Massachusetts which have prioritized expanding charging infrastructure yet

still experience low PEV adoption compared to CV adoption, this paper answers the question: to

https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer
https://www.iea.org/data-and-statistics/data-tools/global-ev-data-explorer


what extent can charging station infrastructure influence drivers’ decisions to adopt and use a

PEV?

In order to understand why charging infrastructure matters for PEV adoption, we must

consider the symbolic value of charging stations. Ease of accessibility to charging stations

reduces the chances that the driver will fail to reach their destination because the vehicle ran out

of charge, therefore they seem to represent safety and convenience on the road. Although most

charging happens at home, owners of current electric vehicles cited shorter driving range and

concerns about charging away from home as some of their greatest concerns prior to making

their purchases. These concerns that the vehicle will run out of charge before reaching its

destination (because the vehicle’s range is shorter and more variable than the driver is used to or

charging stations are too few and far between in an emergency, etc.) are known as “charge

anxiety”. In theory then, adding charging stations alleviates charge anxiety sufficiently for

consumers to feel comfortable purchasing a PEV; however, White et al. (2022) find that charging

stations predominantly increase adoption through a different treatment channel, namely by

influencing consumer perceptions of their community’s subjective norms regarding BEVs. The

authors argue that extensive charging infrastructure represents greater social acceptance of

electric vehicle drivers, which suggests that people generally perceive battery electric vehicles

negatively in the absence of charging infrastructure.

Due to slow PEV adoption, there is limited publicly available data to investigate the

extent to which charging station density affects PEV adoption. The most up-to-date and

comprehensive publicly available source of data on electric vehicles is the National Household

Transportation Survey, which surveys a relatively small nationally representative sample of

electric vehicle drivers on their driving habits, vehicle characteristics, and demographics every



five years. Various datasets on public charging station usage have recently been assembled (Baek

et al., 2024; LeCroy & Dobbelaere, 2024); however, the Alternative Fuels Data Center (AFDC)

maintains the largest and most current catalog of charging in the U.S.. To help bridge the gap in

charging data and shed new light on the station usage of a small but potentially important subset

of the charging station population, I assembled a station-level panel dataset tracking various

measures related to PEV charging from charging stations on the campuses of higher education

institutions (HEIs) in New York and Massachusetts. These states are also known for having

many HEIs, therefore they are well-suited to study charging patterns at these institutions. I

assembled the dataset by reaching out to colleges and universities which specified on their

website that charging stations are available for PEV drivers on-campus. Despite efforts to follow

up with schools, only 16 schools of the 44 schools I contacted showed interest in providing data,

and only 12 schools responded with usable data (see Table 1. under III. Data Discussion for more

details on each school).

Promoting social acceptance of environmentally friendly driving alternatives (like PEVs)

is a unique selling point for many HEIs. In fact, Shields (2019) reveals they are often viewed as

“catalysts” for sustainable development, therefore HEIs are plausibly adding charging stations to

shape community opinion. This means that they may be affecting the amount and distribution of

charging in the area independently of the community’s demand for charging; in other words, they

are creating demand for charging electric vehicles on-campus by affecting consumer preferences

for electric vehicles. Thus, I investigate the impact of adding charging stations to HEI campuses

in New York and Massachusetts on PEV adoption and usage.

Under this assumption, I use a staggered differences-in-differences design to identify the

marginal effect of adding a charging station on PEV adoption and charging station utilization



on-campus. The treatment is therefore the addition of a charging station to campus. This design

allows me to exploit the variation in the timing of station installations across campuses to

estimate the effects of each additional station to a campus, holding all other factors (such as

seasonal and across-campus differences in charging patterns) equal. I control for the historical

price of electricity at home, which is where most charging happens, and changes in the pricing

scheme used by the HEI.

Using a staggered differences-in-differences design, I show that HEIs can meaningfully

impact PEV adoption and increase station utilization by adding charging infrastructure.

Specifically, I find that adding the first station meaningfully increases station energy usage by

anywhere between 22.4 kWh and 25.2 kWh daily, whereas each subsequent station meaningfully

increases station utilization by anywhere between 5 kWh and 5.8 kWh daily. The number of

unique users in a week significantly increased anywhere between 1 user and 1.7 users following

the addition of the first station, and increased anywhere between 0.4 users and 0.5 users

following the addition of subsequent stations. Notably, the number of repeat, unique users (i.e.

PEV owners charging regularly on-campus) increased significantly both with the addition of the

first station and subsequent stations. Overall, these findings suggest that the first station attracts a

couple of PEV owners to charge on-campus, who charge their vehicles up to 125 kWh each

week. For reference, the AFDC considers the average PEV battery capacity to be 54 kWh

(although this can vary widely depending on model, temperature, battery age, etc.). On the other

hand, subsequent stations attract less than one unique user each week, and encourage new and

existing users to charge an additional 29 kWh each week. I also find there are diminishing

marginal returns to both PEV adoption and station utilization from adding stations on-campus,

which suggests that HEIs’ capacity to encourage charging on-campus is constrained either by



factors affecting demand for charging on-campus (e.g. congestion at charging stations and

general parking) or consumer preferences for PEVs in the HEI community. Regardless, my

findings suggest that there is growing demand for charging on-campus likely as a supplement for

charging at home.

II. Literature Review

Partly due to slow adoption, there is little publicly available data on PEVs and charging

station utilization, particularly in the U.S.. In the past few years, however, researchers seem to be

paying more attention to electric vehicles, contributing to a growing body of literature on PEVs.

I investigate relevant papers on the economics of PEVs and PEV charging, including papers that

identify factors affecting PEV adoption and usage, papers identifying the key factors affecting

charging station utilization, and papers making recommendations for electric vehicle policy. The

final category seems the most developed, which makes sense given that many policymakers are

passionate about facilitating the transition away from CVs, yet have been so far unsuccessful in

considerably boosting PEV adoption.

In general, a consumer’s choice to purchase a PEV depends on the net cost of a PEV,

which carries a higher up-front cost (likely of a brand-new PEV as the used-PEV market is still

immature) plus the cost of at-home charging and maintenance costs (which are low relative to

CVs) minus federal and state rebates (Rapson & Muehlegger 2023). Electric vehicle buyers can

receive up to $2,000 in New York or $6,000 in Massachusetts in rebates depending on the

vehicle’s range, along with up to $7,500 in rebates from the federal government legislated by the

Inflation Reduction Act (U.S. News & World Report 2023). Rapson & Muehlegger (2023) affirm

the importance of fuel cost savings in boosting electric vehicle adoption, and find that in New



York state, driving an electric vehicle could potentially save drivers between $202 and $258 per

year, whereas annual savings range from $70 to $202 dollars in Massachusetts. An exhaustive

literature review conducted by Pamidimukkala et al (2024) finds that the higher up-front cost,

insufficient charging infrastructure, and shorter driving range relative to conventional vehicles

are consumers’ greatest concerns about purchasing an electric vehicle. On the other hand, they

find that reducing air pollution and taking advantage of rebates are often cited as reasons for

purchasing an electric vehicle. He et al. (2022) confirm that in Hong Kong, accessibility to

charging and environmental concern meaningfully bolster consumer interest in purchasing a

PEV, while shorter driving ranges reduce interest. Lashari et al. (2021) also show perceived

environmental benefits and economic background to be the two strongest signifiers of electric

vehicle adoption in South Korea. Both He et al. (2022) and Lashari et al. (2021) use stated

preference survey data; however, Coffman et al. (2016) suggest that actual purchases of electric

vehicles are much lower than stated preferences.

Certain demographics are associated with greater electric vehicle adoption, which I

briefly discuss in order to appreciate the unequal distribution of the benefits of charging station

infrastructure. In Ireland, Mukherjee & Ryan (2019) show that being located in an urban area is

associated with greater early electric vehicle adoption, which is also higher among people with a

university degree and lower among younger people (ages 19 to 24) and those renting their living

space, which may indicate challenges to access to at-home charging infrastructure.

Unsurprisingly, the higher cost of EVs and information asymmetry (i.e. people with a university

degree are more likely to have encountered and researched an EV) creates barriers to adoption

which are reflected in the demographic characteristics of the electric vehicle-owning population.

Given that my primary dataset tracks the charging behavior of PEV owners on HEI campuses, it



is reasonable to assume that the PEV owners in my sample are highly educated and own their

own home.

Since PEV usage might be correlated with greater station utilization, I also investigate the

factors influencing a driver’s decision to use their PEV. Davis’s (2023) analysis of the 2017

National Household Transportation Survey (NHTS) reveals that 89% of people who own an EV

also own a CV, and 66% of households with a conventional vehicle drove their conventional

vehicle more. Although I could not find any literature investigating the factors underscoring

household substitution between their electric and conventional vehicles, there is some literature

investigating the factors determining how much PEV owners drive and how they refuel. Nehiba

(2023) finds that the cost of charging has a significant impact on New York BEV owners’

decisions to drive, concluding that a 10 percent increase in residential electricity prices results in

a 0.82 percent reduction in BEV mileage. Soltani-Sobh et al. (2017) affirm his conclusions at the

national level. Furthermore, Nehiba also shows that electricity prices lose predictive power as

public charging infrastructure expands, which suggests that people substitute public charging for

at home charging as it becomes more convenient to charge at public stations. Contrary to

findings on BEVs, Chakraborty et al. (2020) find that some PHEV owners in California rarely

charge their PHEVs, instead refueling solely with gas.

Given that my primary dataset tracks charging station utilization on HEI campuses, it is

also important to understand how drivers choose where to charge their vehicle and the factors

influencing station utilization. A report on PEV owners in California suggests that drivers

primarily choose where to charge their vehicle based on workplace charging availability and free

charging (Tal et al., 2020). Additionally, they find that home ownership, type of house (e.g.

multi-unit dwelling) and age of driver also influence where drivers charge. Furthermore, they



discover that the choice of charging location may depend on technological factors like electric

range. According to Borlaug et al. (2022), station utilization is determined by local PEV

adoption, the size of the local charging network, and population density. Two case studies on

station utilization at University of Georgia and Purdue University find that stations are most

often occupied during the day and on weekdays (Hovet et al. 2018; Mathew et al. 2019).

Typically, those charging their vehicles are faculty and staff, who have parking permits and for

whom charging on-campus is more convenient because it is part of their daily activities (Mathew

et al. 2019). At Purdue University, charge idling, where vehicles occupy a spot without charging,

was found to account for up to 40 percent of occupied time depending on the station. At the

University of Georgia, idling was also observed, but 90 percent of cars idled for less than one

hour. These findings may suggest that poor charging practices like charge idling are endemic to

HEI campuses and may contribute to congestion at charging stations.

Most papers on EV policy focus on quantifying the effect of consumer subsidies or the

regressivity of a proposed tax on CVs. For example, Rapson & Muehlegger (2023) and Zhang et

al. (2019), respectively, suggest that optimal EV policy includes subsidies to address market

failures, such as local pollution, while Levinson (2019) suggests that a tax on gas is less

regressive (meaning that lower income people disproportionately bear the financial burden of the

policy) than regulating fuel economy standards. A gas tax should therefore reduce the adoption

and usage of CVs in an equitable way, which may prompt more people to consider EVs by

lowering their relative cost. The policy research most relevant for my paper; however, is whether

or not expanding charging infrastructure affects EV adoption, since the goal of my paper is to

determine if there is any benefit to college campuses increasing the number of charging stations

on-campus. Li et al. (2017) estimate that indirect network effects leading to feedback loops

https://doi.org/10.3390/batteries4020027
https://docs.lib.purdue.edu/jtrpaffdocs/42/


between EVs and charging infrastructure contributed to the significant rise in adoption in

response to the Inflation Reduction Act’s $7,500 consumer rebate, but that the same subsidy

applied to charging station deployment could have more than doubled EV adoption. Similarly, a

cost-benefit analysis performed by NYSERDA (2019) found that the societal benefits of adding

charging stations outweighed the costs in both Upstate New York and Long Island, but not Metro

New York City due to high electricity costs. Ultimately, my contribution to the literature is to

study how a different kind of policymaker, namely HEIs, might facilitate the transition to more

sustainable and more energy secure methods of transportation through charging offerings

on-campus.

III. Empirical Theses

To introduce my data and variables, it is useful to establish a theoretical framework to

better understand the factors that feed into a PEV driver’s decision to charge. The treatment

effect, which will be station additions to a campus, primarily affects the choice to adopt and

charge a PEV on-campus through three channels.

First, the extensive margin captures the impact of the first station to be added on-campus.

Since I have historical data going back to each station’s inception1, I can assess the impact of

introducing charging infrastructure on-campus on PEV adoption. The accuracy of these estimates

is limited by my dataset, which only captures charging behavior on-campus. Since I can only

count the vehicles which plugged into the charging station at some point, I cannot measure the

number of PEVs on-campus before charging infrastructure was added. It is likely that those

charging on-campus immediately following the introduction of charging stations on-campus

1 with the exception of one station on Skidmore College campus that was owned by National Grid and later
transferred to Skidmore



already owned a PEV and took advantage of the opportunity to charge on-campus. On the other

hand, there is reason to believe that the presence of charging infrastructure may have a unique

impact compared to adding additional charging stations, especially in light of White et al. (2022)

who suggest that charging stations symbolize social acceptance of electric vehicles. This may

indicate that even one station might have a larger impact on HEI community perception

regarding PEVs, and thus reduce the possible social costs of adopting a PEV. Thus, I expect that

having any stations on-campus can encourage PEV adoption in the long-term.

The intensive margin captures the impact of installing an additional charging station

on-campus. Subsequent stations also have symbolic value, as according to White et al. (2022)

more chargers are linked with greater PEV adoption, therefore I expect that adding additional

charging stations will increase the number of unique users charging on-campus. While I believe

this is the most likely scenario, it is also possible that PEV adoption is unaffected by subsequent

station additions, either because the community still overwhelmingly prefers to drive a CV or

because there is insufficient charging infrastructure to support additional PEVs. Campuses that

have not possessed multiple stations for very long might be more susceptible to the former issue

as both perceptions of PEVs take time to change and purchases of long-term investments like

automobiles may not happen as soon as preferences change. Consequently, I believe that an

increase in the number of unique users charging on-campus as more stations are added reflects

recent purchases of PEVs rather than merely the decision to substitute charging on-campus for

charging elsewhere.

Explaining the impact of the latter issue requires an understanding of congestion, which

is the third channel through which adding charging stations affects PEV adoption. In the context

of PEV charging, congestion is when PEV drivers “crowd out” one another. Congestion is likely



to happen during peak charging times (i.e. during the work week and during the day) on

campuses where there is a lot of demand for charging or bad charging practices. An example of

bad charging practices might be charge idling, which is when the vehicle is fully charged yet still

parked in the designated spot for charging. Other factors might contribute to congestion, such as

the unreliability of subsequent stations (e.g. they require maintenance more often, so it is less

likely that they will be able to deliver a charge when drivers need it). In theory, adding more

(reliable) charging stations should relieve congestion; however, adding more stations might also

create more demand for charging, which causes congestion. Thus, the impact of congestion on

adoption is ambiguous. While I have no direct measure of congestion, I attempt to quantify the

demand for charging on-campus by supplementing my results on the number of unique users

charging on-campus with an investigation of the effect of charging infrastructure on station

utilization.

IV. Data

My primary dataset is composed of per session charging data from each station on

thirteen HEI campuses, ranging from May 5, 2014 to January 31, 2024. I received information

on many different variables; however, the relevant ones for my analysis are the date and time of

each charging session at each charging station, the electricity consumption per charging station

(kWh) per session, and user ID numbers that uniquely identify each time a user charges their

PEV. Using this data, I can identify the first time the first station is used (i.e. when did the

campus go from having no charging infrastructure to having charging infrastructure?), the first

time each subsequent station is used (i.e. when were subsequent stations added to campus?), and

the last time each station is used (i.e. have any stations not been used for a while?).



Identifying the first time the first station was used indicates when charging infrastructure

was added to the campus, while identifying the first time each subsequent station is used allows

me to count how many stations are on a campus at a given time. My last treatment variable is a

squared term for the number of stations on-campus, which allows for a nonlinear relationship

between charging on-campus and PEV adoption. I expect that adoption will grow more slowly as

the number of stations on-campus increases because there is likely a segment of the HEI

community who are already particularly interested in owning a PEV and are sensitive to changes

in the charging infrastructure on-campus, but as the charging needs of these drivers are met, it

becomes harder to incentivize new people to adopt a PEV purely on the basis of charging

on-campus. This is partly because there will always be some people for whom a CV is

preferable, whether that be a function of its longer driving range, lower price, personal

preference, or any other factor. Therefore, the number of users added by the tenth station is likely

going to be fewer than the number added by the first or second stations, so the coefficient on the

stations squared term should be negative.

I am primarily interested in the effect of these treatment variables on PEV adoption,

which I proxy with the number of new, unique users in a week. Since each user is associated with

a unique ID number, I can differentiate between repeat users and new users charging at a station.

One limitation to using user IDs is that there is not always a user ID reported for every session. A

fairly large share of observations were missing (42% of observations missing user IDs from the

set of 161,278 observations). On the other hand, one of the advantages of using user IDs to

measure PEV adoption is that I can draw conclusions about PEV adoption patterns without

having to control for county, state, or nation-level trends in PEV adoption.

This also has important implications for my second dependent variable, namely daily



station electricity consumption, which proxies station utilization. Station utilization is meant to

supplement my results for adoption, as I would expect to see greater levels of station utilization

as PEV adoption increases. Ideally, greater utilization reflects drivers’ decisions to drive more;

however, since I do not observe charging behavior at home or at other public locations, I cannot

infer that drivers are not simply substituting charging elsewhere for charging on-campus. Still, an

uptick in station electricity consumption indicates that PEV drivers want to charge on-campus,

which might suggest that convenient and reliable charging infrastructure outside of the home is

feasible.

I obtained data from twelve HEIs in New York and Massachusetts, which are listed in

Table 1, along with the HEIs that responded without usable data and their reasons for doing so.

For the HEIs that provided usable data, there is also information on the city in which the campus

is located, the current number of stations, when charging infrastructure was first installed, the

pricing scheme, details about any changes in the price of charging, and whether or not user IDs

are reported.

The city in which the campus is located indicates that the HEIs in my dataset range from

very rural settings, like Colgate University’s campus, to suburban settings, like UMass Amherst’s

campus in Newton, and urban settings, like SUNY ESF. There are no HEIs with metropolitan

settings, as I did not reach out to schools in metropolitan areas like New York City because

transportation and charging patterns are likely to be different. I believe this to be the case

because metropolitan areas are known for having reliable public transportation, high traffic, and

parking shortages. Given these deterrents, adding charging stations may not have much of an

impact on PEV adoption unless charging infrastructure increases significantly.







Panel A. and Panel B. provide summary statistics for the variables relevant to the

estimation of the weekly number of unique users on a campus and the estimation of the daily

amount of energy usage by a station, respectively. Panel A. indicates there are at most 173

stations across 13 campuses. I drop one station which was used very few times compared to the

other stations in my sample (<50 sessions recorded). For UMass Amherst, I grouped together the

Amherst and Hadley campuses since they are close to one another and considered the

Newton-campus separately since it is a several hour drive from the Amherst and Hadley

campuses. Starting with my treatment at the extensive margin, Table 1. indicates that the dataset

includes HEIs that were early adopters of charging infrastructure, like SUNY New Paltz, and

those that more recently adopted charging infrastructure, like Smith College. Table 1. also breaks

down the number of stations by HEI, ranging from just three stations to 29 stations, with a

considerable amount of variation in between these extremes. Thus, I am able to assess the impact

of having only a few stations on-campus and the impact of having many stations on-campus,

which is one of my alternative specifications in which I bin observations based on the number of

stations on-campus.

When reaching out to HEIs, I also asked if the price of charging on-campus has ever

changed. An increase in the price of charging (e.g. adding an overstay fee, which charges drivers

extra for every hour they leave their car plugged in after charging is complete) might disincentive

charging on-campus (as long as charging elsewhere is still relatively more expensive). Thus, I

would expect both station utilization and PEV adoption to decline as the price of charging rises.

In order to control for pricing changes, I include a campus-by-price-change fixed effect, which is

equal to one for all observations if a campus has not changed their pricing scheme, equal to two

for all observations after the first change in the pricing scheme, equal to three for all observations



after the second change in the pricing scheme, and so on. Five schools changed their pricing

scheme at some point, which are shown in Table 1.

Lastly, Table 1. indicates which schools reported user ID numbers. Nine HEIs reported

user ID numbers, for a total of 4,510 observations. According to Panel A. in Table 2., there is an

average of 1.47 unique users charging on-campus each week and a median of zero users. This

suggests that the distribution of unique users is skewed to the right, meaning that most weeks

there are few to none unique users and a few weeks for which there were many unique users.

After dropping users who only charged on-campus once, the mean falls to 0.84 unique users. I

hypothesize that dropping sessions that occurred during the COVID-19 lockdowns and dropping

sessions that occur during summer and winter breaks will result in a higher average and median

number of unique users. Panel A reveals that the average number of unique, repeat users

increases to 0.85 after dropping observations affected by COVID-19 travel disruptions and

increases further to 0.91 unique, repeat users after dropping observations that did not occur

during the academic year. The median is not affected, which suggests that there are still some

weeks in which many more users charge on-campus compared to others. I explore possible

explanations for this phenomenon in the Results.

Overall, there are 6,613 unique users reported by the end of January 2024. Out of these,

6,180 were reported in New York as only one HEI (Smith College) in Massachusetts reported

unique users. To help put this number into perspective, I also obtained state-level micro-data on

electric vehicle registrations in New York from 2017 to 2021. Registration data indicates that

there were 29,333 electric vehicles registered by the end of 2021. In the context of the

registration data, my data suggests that nearly a fifth of the PEVs registered in New York state

charged at an HEI charging station. While not a large share, this only considers the few HEIs in



my sample, therefore my count is likely an underestimate of the number of PEVs charging at

HEI campuses. This suggests that HEIs play a not insignificant role in encouraging PEV

adoption.

One case provides particularly strong evidence that HEIs are crucial players in PEV

adoption. SUNY Buffalo added three stations initially, then added fifteen stations within a few

months. Figure 1. provides strong suggestive evidence that charging infrastructure increases

PEV adoption: the number of monthly unique users increases from a handful when there were

three stations on-campus to more than 30 users after an additional fifteen stations are added.

Figure 1. also indicates that there are almost half as many unique users during the summer

months and winter break, which is consistent with my findings in Table 2.

According to Panel B. in Table 2, the mean daily energy usage for each station is 2.79

kWh, and the median is zero. This also suggests that distribution of energy usage is skewed to

the right, therefore there are many days where stations are not used and several days where

stations drained a lot of energy, up to 301 kWh. Figure 2. also provides evidence that stations

were utilized much more after the additional fifteen stations were added, as monthly total energy

usage jumps from less than 500 kWh daily to more than 8,000 kWh. Similar to Figure 1., station

utilization peaks during the academic year and is nearly half of those levels during breaks. As

expected, the mean is higher when dropping observations affected by COVID-19 travel

disruptions (2.89 kWh) and even higher when dropping sessions that did not occur in the

academic year. Overall, over 1.66 million kWh were drained from stations across all HEIs in my

sample. Finally, I point out that there are many more observations for the treatment variables

than for daily station energy usage because the treatment variables are calculated at the campus

level. I do this because I still know how many stations are on-campus using energy usage data



from other stations if a given station was last used some time ago.

Finally, I have included summary statistics for my control variable: monthly residential

electricity prices, which I downloaded from the EIA. These prices were nominal, and later

adjusted for inflation using the CPI: Urban Consumers All Items in the U.S. Electricity prices are

similar across states although slightly higher for Massachusetts, which suggests that it is slightly

more expensive to charge at home in Massachusetts.

Figure 1: The weekly number of unique users on SUNY Buffalo’s campus increased more than five-fold after an
additional fifteen stations were added to campus.



Figure 2: Daily energy usage per station on SUNY Buffalo’s campus increased more than ten-fold after an
additional fifteen stations were added to campus.

V. Methodology

I use a staggered differences-in-differences design to gain insight into whether or not HEI

campus charging infrastructure can affect PEV adoption among users that choose to charge

on-campus. To do so, I will be running logit which censors observations for the number of

unique users and energy usage that are below zero. My main model is represented by the

following two equations:

NumberofUniqueUsersit = β1Any_stations + β2Station_obs + β3Station_obs_squared + θXit + δt

+ δi + εit (1)

EnergyUsageit = β1Any_stations + β2Station_obs + β3Station_obs_squared + θXit + δt + δi + εit

(2)



On the left side of the equation, I have two empirical specifications. First, I will estimate

the effect of the treatment variables– Any_station, Station_obs, and Station_obs_squared– on the

number of unique users at the campus level, which will be aggregated by week, as indicated by

equation (1). I will also estimate the treatment effect on the daily amount of energy usage at the

station level to capture station utilization, as indicated by equation (2). On the right side of the

equation, both empirical specifications share the same treatment variables. They also share the

same control variable, which is indicated by Xit. As mentioned in the Data section, I anticipate

that rises in the price of residential electricity, which proxies the cost of at-home charging, may

discourage drivers’ from adopting a PEV and encourage existing PEV owners to charge more

on-campus, therefore I control for monthly variation in residential electricity prices at the

state-level in my specification.

Both specifications also include week of sample and year fixed effects (δt ). Week of year

fixed effects should capture weekly trends in PEV adoption, such as seasonal trends in

car-buying and times when there are more visitors on-campus who might be charging on-campus

for the first time. I also included a year fixed effect to capture long-term trends in new users

charging on-campus. These trends include differences in car-buying from year to year, and

differences in the choice of charging location from year to year, perhaps due to long-term

construction which blocks access to chargers or travel disruptions due to the COVID-19

pandemic. With regards to COVID-19, I expect it will also be necessary to drop all observations

during which COVID-19 necessitated that learning shift to a virtual format, disrupting

commuting to campus well into 2021.

It is also important for my second specification to capture weekly trends in charging, such

as losses in battery capacity during the winter (which might increase energy needed) or



commuting differences due to the academic calendar (which might decrease charging

on-campus). Cold temperatures can reduce driving range by about 25% (Bartlett & Shenhar

2023), therefore controlling for battery loss ensures that my estimates of energy usage are not

biased upwards. Year fixed effects should account for long-term changes in charging behavior,

such as reductions in battery capacity as the vehicle ages. Ideally, I would have full time fixed

effects for equation (1), which includes day of week and within-day fixed effects; however, my

most granular fixed effect is Weekday fixed effects, which captures differences over time in

station energy usage on weekends compared to weekends. Energy usage is lower on average

during the weekends than during weekdays (see Appendix Figure 1), which makes sense given

that most PEV owners charging on-campus work there and most people do not work on the

weekends. Hence, they have no reason to visit campus and would likely incur much

inconvenience by driving to campus to charge, unless they live close to campus.

Lastly, I include campus-by-price-change fixed effects in my first estimation to capture

differences across campuses in factors affecting charging behavior (e.g. size of the local charging

network), as well as charging trends within campuses before and after the pricing scheme

changes. Since energy usage is estimated at the station level, I include both campus-by-price

change fixed effects and station fixed effects. Station fixed effects account for differences

between the popularity of the stations depending on their location, reliability (i.e. how often do

they require maintenance?).

Lastly, εit represents errors across weeks for each campus for the first specification, and

errors across days for each station for the second specification.

VI. Results & Discussion



Table 1. presents the results of my primary empirical specification, which estimates the

effect of having stations on-campus on the number of unique users in a week. Since the number

of unique users proxies PEV adoption and PEV adoption has been shown to be positively

associated with perceived charging station accessibility, I would expect small, positive

coefficients for “Any stations” and “Station observations”. I expect adding the first station to

have a small impact because users are likely existing PEV owners who substitute charging

at-home for charging on-campus. Similarly, I expect adding subsequent stations does not have a

large effect because automobiles are a big investment which usually only happens after their

current vehicle is due to be replaced. Additionally, those interested in purchasing a PEV might

perceive a significant amount of congestion with only a few charging stations on-campus and are

therefore waiting for additional stations to be added. As expected, the coefficients for both

treatment variables are small, positive, and statistically significant across nearly all estimations.

The coefficient for “Any stations” in my Main (1) and Clustering Standard Errors By

Campus (2) estimations suggests that having any charging infrastructure on-campus attracts

1.212 unique users each week and 1.033 repeat, unique users each week. Adding back

COVID-19 years (4) raises the estimate of unique users slightly, which indicates there might

have been a few users charging on-campus for the first time during COVID-19. Using calendar

time fixed effects instead of sample time fixed effects increases the precision of my estimates

and results in a slightly larger coefficient of 1.729 unique users each week which is statistically

significant at the 1% level.

I find that each additional station increases the number of unique users charging

on-campus each week by 0.526 (1), (2); however, this result loses significance after clustering

standard errors (2). On the other hand, each additional station increases the number of unique,



repeat users by 0.393, which is statistically significant at the 1% level even after clustering

standard errors (3). Running tobit on the full dataset reveals that each additional station increases

the number of unique users by 0.448. Since some schools added stations during COVID-19, it is

likely that these results overestimate the true number of unique users charging on-campus. I also



conduct a robustness check which adjusts the number of stations on-campus if a station has not

been used for more than a year, as this might indicate that the station is no longer operable or

inaccessible. Including these so-called “station subtractions” (6) barely alters the coefficient and

increases its significance. Since only three stations in the sample that provided user ID data are

subtracted, it is also possible that there simply were not enough apparent station subtractions to

capture the full effect of station subtractions. This is likely, given that the coefficient on station

subtractions (an indicator variable which is equal to 1 in the week for which campuses removed

stations) is statistically insignificant. Notably, this coefficient is positive, which is contrary to

expectations.

The squared term for the number of stations ranges from -0.016 to -0.020 unique users

each week and is statistically significant at the 1% level in every estimation except (2). This

suggests that the number of unique users each week increases at a decreasing rate as the number

of stations on-campus grows. This makes sense given that I would not expect the 20th station to

impact a driver’s perception of charging station accessibility on-campus as much as the 5th

station, unless stations are very congested even for a large number of stations on-campus.

Consequently, I expect that each additional station attracts fewer unique users compared to the

previous station. Ultimately, these results suggest that adding charging infrastructure on-campus

induces existing PEV owners to charge on-campus, while expanding charging infrastructure has

a very small, yet significant, impact on PEV adoption.

Another way I try to capture the effect of charging stations on unique users charging

on-campus is by binning stations (7). The first bin is for zero stations, the second is for one to

three stations, the third is for four to 10 stations, the fourth is for 11 to 19 stations, and the fifth is

for more than 20 stations. Since I drop the first bin, I interpret the coefficients on the second bin



as the following: compared to having no stations, having one to three stations increases the

number of unique users by 20.578. Similarly, having four to 10 stations adds 21.791 unique users

compared to having no stations, having 11 to 19 stations adds 22.868 unique users compared to

having no stations, and having more than 20 stations adds 27.420 unique users compared to

having no stations. These results are statistically significant with a confidence level of 99%.

While the number of unique users added in each bin is about the same for the first three bins, the

last bin holds nearly five more unique users compared to the other bins. Since there does not

seem to be any clear correlation between the number of charging stations and the time since

charging infrastructure was introduced, it is unlikely that these results suggest that PEV owners

are slow to respond to charging station infrastructure. It is more plausible that there are more

unique users in the last bin because one of the two HEIs in my sample with more than 20 stations

(i.e. University of Rochester) also happens to be a very large school, which increases the

potential number of PEV owners who are likely to charge on-campus.

Residential electricity prices have a very small negative impact on the number of unique

users on-campus which is statistically zero when clustering standard errors (2) or binning

stations (7). I believe that PEV adoption is negatively correlated with the cost of at-home

charging because most charging happens at home (DOE, 2023), so drivers are more likely to put

off purchasing a PEV if the price of charging at-home rises a lot. Consequently, there will be

fewer unique users charging on-campus compared to previous weeks. My results are not

surprising given that electricity prices are measured at the state-level; however, electricity prices

can vary widely between counties. Thus, measurement error in electricity prices likely biases my

estimates towards zero. Unfortunately, the EIA does not provide more granular data than what I

have.



Table 2. presents the results of my secondary empirical specification, which estimates the

effect of having stations on-campus on daily station energy usage (kWh). Since energy usage

proxies station utilization and PEV adoption was just shown to increase as charging

infrastructure expands, I also expect positive coefficients for “Any stations” and “Station

observations”. The magnitude of these coefficients depends on how much each driver is

charging, which may be affected by congestion and the existing charge on the vehicle.

The coefficients for “Any stations” and “Station observations” are positive across all

estimations, which indicates that station energy usage rises when charging infrastructure is

added. Specifically, adding the first station increases daily energy usage by 24.196 kWh in my

Main (1) and Clustering Standard Errors By Campus (2) estimations, which is roughly the same

across all estimations. These results are always significant with a confidence level of 99%. This

suggests that the first few users on-campus are draining a lot of energy from the station. Each

subsequent station increases energy usage by 4.966 kWh daily, which is statistically significant

with a confidence level of 99% across all estimations. Since the number of unique users on

campus is also rising as stations are added, these results suggest that PEV owners charging

on-campus after subsequent stations are added are using less energy than the first couple of PEV

owners charging at the first station. Three campuses in the sample of HEIs that provided energy

usage data removed stations at some point: University of Rochester, SUNY SCCC, and UMass

Amherst (Amherst & Hadley). Including an additional variable to capture the effect of station

subtractions on station energy usage (5) indicates that removing a station decreases energy usage

by 2.666 kWh each day. I expect that removing stations reduces charging at a station, therefore

this aligns with my expectations although these findings are not statistically significant as only

five stations were subtracted. Earlier, I found that removing a station slightly increased the



number of unique users. In comparison to the results for “Station subtractions” in the unique user

estimation, the result for energy usage is plausible: removing a station reduces congestion levels

over time by discouraging some people from purchasing a PEV (or encouraging them to

postpone the purchase) and discouraging existing PEV owners from charging on-campus. This

only makes sense if the station is no longer accessible or rendered inoperable, thus I assume this

is what happened since I was not informed that any stations had ever been taken offline when

collecting my data.

As with the coefficients on “Station observations squared” for the unique users

specification, the coefficients on “Station observations squared” are negative and statistically

significant at the 99% confidence level across all estimations of energy usage. Every additional

station increases energy usage by less than two-tenths of a kWh less than the previous station.

Thus, both the number of unique users on-campus and charging station utilization rise more

slowly as the number of charging stations on-campus rises.

The results of binning stations in the same way as for the unique users estimations (6)

indicates that compared to having no stations, having one to three stations increases energy usage

by 177.273 kWh. Similarly, having four to 10 stations drains about 188.392 kWh compared to

having no stations, having 11 to 19 stations drains about 193.796 kWh compared to having no

stations, and having more than 20 stations drains about 199.020 kWh compared to having no

stations. These results are statistically significant with a confidence level of 99%. Each bin of

stations drains more energy compared to the previous bin, but by a lesser amount compared to

the previous bin (e.g. bin 11 drains eight more kWh than bin 2, bin 4 drains five more kWh than

bin 3, and bin 5 drains five more kWh than bin 4). This suggests that campuses with more

stations are probably being utilized more than campuses with fewer stations because there is



greater perceived and actual charging station accessibility (i.e. less congestion), which allows

PEV owners to charge more. In the context of the results of binning stations on the number of

unique users, these results support the conclusion that the new users on campus are able to utilize

the stations on-campus.

Overall, these results suggest that the first station brings a few PEV users to campus who



are able to charge their vehicle longer because there is not a lot of demand on-campus for

charging. As subsequent stations are added, more drivers are incentivized to adopt a PEV and

charge it on-campus which increases congestion. In reaction to greater demand for charging

on-campus, drivers charge less. Alternatively, the fuel economy of PEVs may simply have

improved since the first charging station was added on-campus. For several HEIs in my sample

(e.g. UMass Amherst), charging infrastructure has existed for more than 10 years. It is not

difficult to imagine that vehicles have simply become more efficient, which considerably reduces

the need for charging.

Finally, I consider the implications of my control variable, residential electricity prices. I

would expect that charging station utilization on-campus would increase as charging at home

becomes relatively more expensive (as long as charging on-campus does not depend on energy

prices). Electricity prices are statistically significant only for the Main (1) estimation; for all

subsequent estimations, a one dollar increase in the price of electricity has statistically zero

impact on charging station utilization. Unlike the results of estimation (6) in Table 1., binning

stations result in a positive electricity price coefficient, which is likely because owners are

substituting charging at-home for charging on-campus.

VI. Conclusion & Policy Implications

Over the past few months, I have compiled charging station data from HEIs throughout

New York and Massachusetts to understand their role as catalysts for developments in

sustainability. I ultimately received usable data from 13 HEIs to investigate the extent to which

these institutions can impact PEV adoption through charging infrastructure on-campus. I

supplement these findings with an investigation of the impact of charging infrastructure on



station energy usage, which captures differences between stations in utilization. I anticipate that

adding charging infrastructure will affect PEV adoption and station utilization at the extensive

margin, which is the impact of adding the first station, and at the intensive margin, which is the

impact of adding subsequent stations. Additionally, I consider the implications of congestion,

which I cannot directly measure, on PEV adoption and station utilization. Using a staggered

differences-in-differences design, I show that HEIs can meaningfully impact PEV adoption by

adding charging infrastructure. Specifically, I find that adding the first station meaningfully

increases station energy usage by about 24.2 kWh daily, whereas adding subsequent stations

meaningfully increases the number of unique users in a week by less than one and increases the

amount of energy used by each station by about five kWh each day. I also find there are

diminishing marginal returns to both PEV adoption and station utilization from adding stations

on-campus, which is likely achieved when campuses install sufficient charging infrastructure to

meet current demand for charging. Since the average battery capacity of a PEV is around 50

kWh, these results suggest that PEV users treat charging on-campus as a convenient

supplementary source of charging, rather than the main source of charging, which still likely

happens at home.

In general, my results suggest that HEIs can catalyze PEV adoption through charging

on-campus, although this effect shrinks as the number of charging stations exceeds current

demand. I believe that HEIs should consider the number of stations already on campus when

deciding whether or not to install additional charging stations. I also advise taking steps to gauge

how much interest the community has in adopting PEVs, such as a transportation survey.

My empirical methodology is limited in several ways by my data. Most obviously, I only

have 13 HEIs in my sample, and only nine reported user IDs that distinguish one user from



another. Additionally, I only received data from two schools in Massachusetts (which translates

to three campuses). This may limit the generalizability of my results outside of New York state,

in which most of the HEIs were located. Regardless, I believe that my results can generalize to

most areas in the Northeast, given that the campus settings in my sample range from rural to

urban (but exclude metropolitan) and that PEV adoption and charging infrastructure is largely

comparable. I was also limited by the data I could find on residential electricity prices, which

captured differences in the average price between states.

In the future, I would like to explore several related tracks. First, I considered controlling

for the price of gas in my estimations; however, there was little literature or surveys that

indicated PEV drivers were actively switching between different types of fuel and vehicles

depending on the cost of refueling each. What I did find suggested that there was no causal

relationship; however, investigating this further might prove useful for policymakers looking to

minimize our carbon footprint by reducing demand for gas. Although my dataset does not

provide information on the specific model charged at each station, I would also expect

heterogeneous effects of adding charging infrastructure on-campus on BEV station utilization

versus PHEV station utilization. BEVs might be more sensitive to charging station infrastructure

since they rely completely on it than PHEVs, therefore I might expect BEV adoption to increase

more in response to PHEV adoption; however, my results suggest that charging on-campus is

likely not the main source of charging for most users, so there might not be any difference.

Regardless, understanding trends in BEV and PHEV adoption on-campus might be valuable to

HEI policymakers as they seek to make decisions that minimize the community’s impact on the

environment. Finally, I would also like to explore the effect of adding charging infrastructure to

campuses in metropolitan areas, like New York City or Boston. I did not reach out to HEIs in



these areas because I anticipate that PEV adoption trends and charging patterns are likely much

different in high-traffic areas with reliable public transportation compared to areas like Upstate

New York, where most people rely on having a vehicle which they can refuel to move around. I

anticipate that charging infrastructure likely does not have as much of an impact on PEV

adoption, partly due to alternative transportation methods which are more environmentally

friendly than driving (e.g. buses, subway) and partly due to crowded parking spaces, which

might translate to greater congestion at the few charging stations available.
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Appendix

Figure 1. Investigating variation in the average daily energy usage per station for days of week
to determine whether there is sufficient variation to be able to run day of sample fixed effects.


