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ABSTRACT
We study the optical ¯elds produced by non-integral binary forked gratings. We analyze experimentally the
phase structure of the light beams by interference. We were able to identify individual optical vortices directly
by observing the dislocations in the fringe pattern. Our experimental results agree well with of all the generic
features predicted by the theoretical model [M.V. Berry, \Optical vortices evolving from helicoidal and fractional
phase steps," J. Opt. A 6, pp. 259{268, 2004.]. Our results underscore the conservation of orbital angular
momentum of the light/optical-apparatus system.
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1. INTRODUCTION
Optical vortices are a topic of intense research today. Within the ¯eld of singular optics they provide rich new
understanding of waves with complex wavefronts. The orbital angular momentum that they posses adds a new
fundamental characteristic to light beams. At the quantum level optical vortices provide a rich n-dimensional
system in which to encode quantum information. Optical vortices also add the transfer angular momentum to
the set of tools that can be used to manipulate matter with light.

Optical vortices can be generated by various means. One involves the use of computer-generated di®raction
gratings, which produce optical-vortex-bearing beams in the di®racted orders. Binary amplitude gratings were
the ¯rst type of gratings to be used.1{3 Their versatility and ease of construction make them very popular for
research as well as for education.4 Their disadvantage is their low e±ciency. Since the di®racted energy is spread
among the di®racted orders, the e±ciency for producing a given order is low. Blazed forked gratings or phase-
blazed gratings enabled a more e±cient production of beams in the di®racted orders.5, 6 However, their fabrication
is not trivial. The advent of the spatial light modulator has enabled an easier and more e±cient generation of
these beams via di®raction by use of a phase-encoded pixilated grating controlled by a computer.7 Di®raction
from forked gratings can also be used for measuring the optical vortex (i.e., the charge) of a light beam.8 Optical
vortices can also be produced by transmission through a single phase-plate with an axially dependent thickness.9

Recent work on optical vortices has involved the study of beams bearing multiple vortices,10{12 non-integer
vortices,9, 14{16 and the propagation dynamics of intertwined vortices.17, 18 These systems are interesting because
they reveal properties of the light ¯eld that are not immediately obvious from simple observation of complex
light patterns.

In this article we investigate beams produced by non-integral binary di®raction gratings. Beams di®racted
by gratings with non-integral dislocations produce an interesting pattern of vortices, which as a whole conserve
the angular momentum of the light/optical-apparatus. We use binary forked gratings to appreciate the e®ect
of the dislocation on the various di®racted orders. In Sec. 2 of this article we discuss the general principles of
di®raction by binary forked gratings, and the methods that we used to diagnose the di®racted beams. In Sec. 3
we present the results of our study of beams di®racted by non-integral forked gratings.
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2. FORKED DIFFRACTION
A discussion of the ¯rst-order Fraunhofer di®raction from a forked binary grating has been given before.19 That
discussion can be generalized to all di®racted orders leading to an interesting result: if a beam with a topological
charge `inc is incident on a forked di®raction grating with topological charge `fork, then the topological charge
of the beam in the n-th di®racted order is given by

`di® = `inc + n`fork: (1)

We can understand this relation qualitatively the following way. A binary forked grating is a computer generated
hologram constructed by calculating the interference pattern produced by two beams forming an angle ¯, one of
zero order and another one of order `fork. It is well known that the points (x; y) at the center of the fringes of
the grating satisfy19

m =
x
¸

sin¯ +
`forkµ
2¼

; (2)

where m is an integer, and µ = tan¡1(y=x) is the angle subtended by point (x; y) relative to the horizontal, with
point (0; 0) being the center of the grating. The grating has an average fringe separation given by

h¢xi =
¸

sin¯
: (3)

The modulation of the fringe separation that is typical of forked gratings depends on `fork. Upon illuminating
the grating with a beam at normal incidence results in di®racted orders appearing at angles sin¡1(n¸=h¢xi).
The wavefront that emerges from the grating in the direction of order n has a phase dislocation given by n`fork.
If the beam incident on the grating has a topological charge `inc, then the beam reaching the grating openings
has a phase that varies with `incµ. This phase variation at the grating slits adds to the phase generated by the
fringe modulation of the grating. Thus, the di®racted beam has a topological charge given by the sum of the
two (i.e., Eq. 1). For integral vortices we can understand this equation from a more general perspective: it is a
manifestation of conservation of orbital angular momentum. The dislocation of the grating adds a torque n`fork¹h
per photon to the orbital angular momentum of the incident beam, `inc¹h per photon, to give the di®racted beam
its ¯nal orbital angular momentum.

In the laboratory we analyzed the phase pattern of the emerging beam by interference with an expanded
reference beam. Optical vortices appeared as forks in the fringe pattern.12 A topological charge can be read from
the interference pattern by the fork dislocation in the fringe pattern. This is shown in Fig. 1. When going on a
closed path around a phase singularity we count the number fringes gained or lost in the round trip, with fringes
advanced in one direction (e.g., right to left) counted oppositely with those advanced in the reverse direction
(left to right). The number of fringes gained or lost give the charge of the singularity. A simple rule to follow is
that the charge of a single fork is the number of tines minus one.

In this work we generated non-integral vortex beams by di®raction o® forked binary gratings. Figure 2 shows
a schematic of our apparatus. The beam from a HeNe laser was sent through a Mach-Zehnder interferometer.

Figure 1. Method to determine the charge of a topological vortex in a fringe pattern. It consists counting the gain or
loss of fringes when going in a closed path around the singularity.



Figure 2. Schematic of the apparatus used to do the experiments. Two forked gratings were used to produce the desired
topological charge. Two sample forked gratings are shown. The phase of the resulting beam was analyzed by interference
with an expanded zero-order beam.

The beam in one of the arms was incident on a ¯rst forked grating. The beam that emerged from the grating was
allowed to expand, and all but one of the di®racted orders were stopped by an iris. A second forked grating was
aligned in the path of the beam emerging from the iris. The desired di®racted order was allowed to go through
a second iris and onto an imaging camera. We investigated the phase of the beam by analyzing the interference
pattern produced when the expanded zero-order beam that went through the other arm of the interferometer
was allowed to reach the camera.

As a ¯rst step toward generating beams with non-integral phase dislocations we veri¯ed Eq. 1. Figure 3
shows four interferograms. Frames (a), (b), (c) and (d) correspond respectively to the di®racted orders 2, ¡2,
¡3 and ¡4 of a beam with `inc = 1 incident on a grating with `fork = 2. It can be seen that the charge of the
beams in Fig. 3 is in excellent agreement with the value predicted by Eq. 1 The cases shown are just a sample
of our studies. In order to do these studies we had to use gratings with slit width-to-separation ratios that did
not suppress any of the ¯rst four di®racted orders.

3. NON-INTEGRAL VORTEX BEAMS
We can easily produce a non-integral grating by following the prescription demonstrated above but using gratings
with a non-integral topological dislocation. It is interesting to ask: What is the resulting pattern? In the

Figure 3. Cases of integral forked di®raction for a beam of topological charge `inc = 1 incident on a grating with `fork = 2.
The di®racted orders 2, ¡2, ¡3 and ¡4, shown in frames (a), (b), (c) and (d), respectively, have topological charges 5, 3,
5 and 7, in agreement with Eq. 1.



theoretical work of Berry14 and experiments by Leach, Yao and Padgett15 we learned that rather than generating
non-integral phase singularities, the resulting beam contains only integral vortices, arranged in a peculiar way.

We start our study by considering the e®ect of a non-integral grating on an incident beam. Figure 4 shows
images of the beams that result when a zero-order Gaussian beam is di®racted by a non-integral forked grating
with `fork = 1:5, similar to the one shown in Fig. 2. The top two images of Fig. 4 show the beam pro¯les of the
¯rst (a) and second (b) di®raction orders. A consequence of the non-integral dislocation is an intensity pro¯le
in the shape of an open-ring, as seen in frame (a) of Fig. 4. The pro¯le of the beam di®racted in second order
is shown in frame (b) of Fig. 4. It has the shape of a closed ring that is typical of an integral vortex beam.
According to Eq. 1 the charge of the second di®racted order is `di® = 3. Frames (c) and (d) of Fig. 4 show the
interference patterns of the beams in frames (a) and (b) of Fig. 4, respectively, with a zero order beam. The
pattern for the second order (d) shows a charge-3 fork, consistent with the expectation. The interference pattern
of the beam with `di® = 1:5 shows one ` = 1 fork in the center of the beam. The pattern is too coarse for us to
appreciate well the other phase corrugations, but one can see another phase dislocation along the opening of the
open ring.

One of the most interesting aspects of the di®raction o® non-integral forked gratings is to observe the formation
of the vortices. Below and above the half integral value of `fork the number of vortices in the beam is `fork rounded
to the nearest integer. We can see this in Fig. 5. The top row has simulations of the phase of the beams based on
Ref. 13. Frames (a), (b), and (c) of Fig. 5 are the simulations for beams with topological charge 7=3, 7:5=3 = 2:5
and 8=3, respectively. Frame (a) of Fig. 5 corresponds to the case when 2 < ` < 2:5, where it can be seen that
the simulation predicts two vortices in the pro¯le. Vortices can be identi¯ed by points where the gray scale goes
through the entire range of shades along a loop surrounding the singularity. In the ¯gures they appear at the
end of the curves with sharp black/white contrast. Frame (d) of Fig. 5 shows an interferogram of a beam with
` = 7=3 created by second-order di®raction of a beam with `inc = 1 incident on a grating with `fork = 2=3. The

Figure 4. Di®raction o® a grating with `fork = 1:5 when the incident beam is of order zero. Frames (a) and (b) are the
intensity pro¯les of the ¯rst and second di®raction orders, respectively. Frames (c) and (d) are the interference patterns
that result between beams (a) and (b), respectively, and an expanded zero-order beam.



Figure 5. Optical beams with an overall phase dislocation around a half-integer value. Frames a-c show the predictions
for the phase of the patterns,14 with the phase encoded in a gray scale; and d-f show the corresponding experimental
measurements of the phase via interferograms. Cases (a,d), (b,e) and (c,f) correspond to beams created by forked gratings
with topological charges 7=3, 7:5=3 = 2:5 and 8=3, respectively.

fringe pattern clearly shows two ` = 1 forks in the center of the pro¯le. We get a similar agreement with the case
of frames (c) and (f) of Fig. 5. They correspond to the case of a beam with ` = 8=3, where the theory predicts
three vortices and the experiment shows a phase dislocation consistent with ` = 3. The beam for case (f) was
produced by ¯rst-order di®raction of a beam with `inc = 1 incident on a grating with `fork = 5=3.

For the beam with the half-integer value, ` = 2:5, which is the case of frames (b) and (e) of Fig. 5, the
situation is very interesting. The theory predicts two vortices in the central region of the beam and a sequence of
` = 1 vortices of alternating sign on the side of the beam corresponding to the phase discontinuity in the forked
grating (i.e., like the one seen in the second binary grating of Fig. 2). This prediction is not entirely obvious
from frame (b) of Fig. 5 because it is zoomed-in to match approximately the experimental scale, shown in frame
(e). The latter frame shows the interferogram of a beam generated by a zero-order beam di®racted in ¯rst order
by a grating with `fork = 2:5. It shows an ` = 2 dislocation in the central region plus one and maybe more
dislocations toward the edge of the beam on the right. The fringe pattern is rather crude to verify speci¯cally
the set of alternating vortices, but it does con¯rm the central phase dislocation.

In an e®ort to investigate the predicted sequence of alternating vortices we did high-resolution interferograms
of several half integer cases. Frame (a) of Fig. 6 shows a high resolution interferogram of a portion of the beam
for the case ` = 1:5. Frame (b) shows a computed contour map of the phase of the wave. Frame (c) shows a
magni¯ed copy of the cutout region in frame (a). In frame (b) we show our best estimate of the cutout region.
Also shown in frame (c) are sketch drawings of the forks caused by the phase vortices. Forks oriented in opposite
directions have topological charges of opposite sign.12 The two forks on the left are consistent with those of frame
(b) of Fig. 4. The gray-scale, and therefore phase, advances clockwise for both. The third dislocation from the
left has a sign opposite to the two on the left. This is clear from the orientation of the fork in the interferogram,
and from the counter-clockwise advance of the phase in the theoretical model. The four labeled dislocations
from right to left are consistent with theory, which predicts a sequence of ` = 1 vortices of alternating sign.14 We
based our determination of the location of the labeled forks by analyzing this and several other interferograms



Figure 6. High resolution analysis of the phase structure of the case ` = 1:5. In frame (a) we show a high resolution
interferogram. Frame (b) shows the theoretical prediction for the phase of the pattern, and frame (c) shows a blow-up of
a region of the interferogram with vortex forks labeled.

of the same case. There appear to be other dislocations beyond the last labeled one on the right of the frame
that we could not determine unambiguously. Their determination is di±cult because the beam is faint in that
region and the alternating forks are separated by one fringe or less. The measured pattern for the case ` = 2:5,
not shown here, shows similar features and is consistent with the theoretical model.

Finally, we present one additional comparison and veri¯cation of some generic but subtler features of di®rac-
tion by non-integral forked gratings. Figure 7 shows a comparison between theoretical predictions of intensity
[frame (a)] and phase [frame (b)] for ` = 2:5 with an experimental interferogram at medium fringe resolution
[frame (c)]. The main features we wish to focus on are the radial intensity and phase modulations. The radial
phase modulations are synchronized with the intensity modulations. The measured intensity modulations show
a remarkable similarity with those predicted by the theory. Since the interference fringes of frame (c) of Fig. 7

Figure 7. Comparison between theoretical intensity (a) and phase (b) corrugations and the experiment(c) for the case
` = 2:5.



are vertical, those modulations can be seen clearly at points above and below the center of the beam. We re-
frain of making a more quantitative comparison since the theoretical calculations do not exactly account for the
wavefront curvature of signal and reference beams in the experiment. We rather state conservatively that the
magnitude of the observed modulations, of the order of a fraction of a fringe are consistent with the theory.

4. CONCLUSIONS

In conclusion, we have investigated the phase and intensity patterns of light beams di®racted by forked di®raction
gratings of non-integral charge. The results of the measurements agree well with all the generic phase and intensity
patterns predicted by theory.14 Our measurement method di®ers from the previous one15 in that we observe the
phase modulations and vortices directly in interferograms. Our measurements con¯rm the results of the previous
work15 plus add new observations of the intensity modulations that were not clearly visible in that work.

Equation 1 appears to be a general law of conservation of angular momentum of optical beams di®racted by
gratings with phase dislocations, where the grating applies a torque on the optical beam such that the di®racted
orders emerge with new values of angular momentum. When `di® is an integer the beam is an eigenmode of
angular momentum, and thus its angular momentum is proportional to `di® . However, a recent study has shown
that in the case of a non-integral value of `di® , the angular momentum of the beam is not proportional to the
value of `di® .15 Thus di®racted beams with overall non-integral topological charge exhibit an interesting richness
that deserves further study.
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